The eag domain regulates hERG channel inactivation gating via a direct interaction

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The eag domain regulates hERG channel inactivation gating via a direct interaction

Human ether-á-go-go (eag)-related gene (hERG) potassium channel kinetics are characterized by rapid inactivation upon depolarization, along with rapid recovery from inactivation and very slow closing (deactivation) upon repolarization. These factors combine to create a resurgent hERG current, where the current amplitude is paradoxically larger with repolarization than with depolarization. Previ...

متن کامل

Direct interaction of eag domains and cyclic nucleotide–binding homology domains regulate deactivation gating in hERG channels

Human ether-á-go-go (eag)-related gene (hERG) potassium channels play a critical role in cardiac repolarization and are characterized by unusually slow closing (deactivation) kinetics. The N-terminal "eag" domain and a C-terminal C-linker/cyclic nucleotide-binding homology domain (CNBHD) are required for regulation of slow deactivation. The region between the S4 and S5 transmembrane domains (S4...

متن کامل

Gating Charges in the Activation and Inactivation Processes of the hERG Channel

The hERG channel has a relatively slow activation process but an extremely fast and voltage-sensitive inactivation process. Direct measurement of hERG's gating current (Piper, D.R., A. Varghese, M.C. Sanguinetti, and M. Tristani-Firouzi. 2003. PNAS. 100:10534-10539) reveals two kinetic components of gating charge transfer that may originate from two channel domains. This study is designed to ad...

متن کامل

The Eag Domain Regulates the Voltage-Dependent Inactivation of Rat Eag1 K+ Channels

Eag (Kv10) and Erg (Kv11) belong to two distinct subfamilies of the ether-à-go-go K+ channel family (KCNH). While Erg channels are characterized by an inward-rectifying current-voltage relationship that results from a C-type inactivation, mammalian Eag channels display little or no voltage-dependent inactivation. Although the amino (N)-terminal region such as the eag domain is not required for ...

متن کامل

Probing the Interaction Between Inactivation Gating and D-Sotalol Block of HERG

Potassium channels encoded by HERG underlie IKr, a sensitive target for most class III antiarrhythmic drugs, including methanesulfonanilides such as D-sotalol. Recently it was shown that these drugs are trapped in the channel as it closes during hyperpolarization. At the same time, HERG channels rapidly open and inactivate when depolarized, and methanesulfonanilide block is known to develop in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of General Physiology

سال: 2013

ISSN: 1540-7748,0022-1295

DOI: 10.1085/jgp.201210870